Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.

نویسندگان

  • H S Moon
  • L McGuinness
  • R K Kukkadapu
  • A D Peacock
  • J Komlos
  • L J Kerkhof
  • P E Long
  • P R Jaffé
چکیده

There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron-reducing conditions and to decrease upon commencement of sulfate-reducing conditions. There are many unknowns regarding the impact of iron/sulfate biogeochemistry on U(VI) reduction. This includes Fe(III) availability as well as the microbial community changes, including the activity of iron-reducers during the uranium biostimulation period even after sulfate reduction becomes dominant. Column experiments were conducted with Old Rifle site sediments containing Fe-oxides, Fe-clays, and sulfate rich groundwater. Half of the columns had sediment that was augmented with small amounts of Fe(III) in the form of (57)Fe-goethite, allowing for a detailed tracking of minute changes of this added phase to study the effects of increased Fe(III) levels on the overall biostimulation dynamics. Mössbauer spectroscopy showed that the added (57)Fe-goethite was bioreduced only during the first thirty days of biostimultuion, after which it remained constant. Augmentation with Fe(III) had a significant effect on the total flux of electrons towards different electron acceptors; it suppressed the degree of sulfate reduction, had no significant impact on Geobacter-type bacterial numbers but decreased the bacterial numbers of sulfate reducers and affected the overall microbial community composition. The addition of Fe(III) had no noticeable effect on the total uranium reduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electro...

متن کامل

Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium

Dissimilatory metal-reducing bacteria (DMRB) can utilize Fe(III) associated with aqueous complexes or solid phases, such as oxide and oxyhydroxide minerals, as a terminal electron acceptor coupled to the oxidation of H2 or organic substrates. These bacteria are also capable of reducing other metal ions including Mn(IV), Cr(VI), and U(VI), a process that has a pronounced effect on their solubili...

متن کامل

Long-term dynamics of uranium reduction/reoxidationunder low sulfate conditions

The biological reduction and precipitation of uranium in groundwater has the potential to prevent uranium migration from contaminated sites. Although previous research has shown that uranium bioremediation is maximized during iron reduction, little is known on how long-term iron/uranium reducing conditions can be maintained. Questions also remain about the stability of uranium and other reduced...

متن کامل

Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer.

A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.0...

متن کامل

Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Water research

دوره 44 14  شماره 

صفحات  -

تاریخ انتشار 2010